Sunday, December 28, 2025



Comprehensive Project Safety Management Plans: A Guide
Comprehensive Project Safety Management Plans: A Guide
Comprehensive Project Safety Management Plans. Safety is a critical element in any large-scale project, especially in the context of defence and complex systems. One essential tool for managing safety is a Safety Management Plan (SMP). In this article, we’ll break down the process and structure of an effective SMP, highlighting its objectives, content, and how to ensure its successful implementation.

Comprehensive Project Safety Management Plans: Introduction

Definitions

A Safety Management Plan is defined as:

“A document that defines the strategy for addressing safety and documents the Safety Management System for a specific project.”UK MoD Defence Standard 00-56

In other words, an SMP serves as a structured approach to managing safety across a project’s lifecycle, ensuring that all risks are identified, analysed, and mitigated effectively.

Objectives

The core objectives of a Project Safety Management Plan are twofold:

- Ensuring Safety Performance: The plan guarantees that the system remains safe throughout its entire lifecycle.

- Maintaining Assurance: It provides the necessary information to demonstrate that safety objectives are being met continuously.

- Achieving these goals requires a coordinated, structured approach that integrates risk management and establishes clear safety requirements right from the start.

SMP in Practice: Contractor vs. Enterprise Project

Each organisation involved in the project—whether it’s the Enterprise Project or a contractor—must produce a distinct SMP that outlines their safety activities. Though separate, these plans should align with each other and the overall project goals. This integration is crucial as safety activities span system development, trials, and any necessary safety approvals.

The SMP discussed here focuses specifically on the Enterprise Project’s plan, which acts as the guiding document for all safety management activities.

Procedure and Methodology

Establishing the Safety Management Framework

The SMP outlines the strategy for ensuring safety and documents the Safety Management System for a particular project. It’s more than just a checklist—it’s a comprehensive program that captures safety timescales, milestones, and other relevant data.

Key areas to be addressed in an SMP include:

- General Equipment Safety: An overarching review of the equipment’s safety features.

- System-Specific Requirements: For example, airworthiness or ship-specific hazards.

- Occupational Safety: Encompassing manual handling, packaging, transport, and more.

- Operational Safety: Ensuring safe procedures during the use phase.

- Maintenance Safety: Guidelines for repair and maintenance activities.

- Training and Disposal: Safety considerations for personnel training and end-of-life disposal of the system.

Creating a Tailored Safety Strategy

No two projects are identical, and neither should their SMPs be. Each plan must be custom-designed to fit the specific project requirements, ensuring a safety strategy that is practical and achievable.

Structuring the SMP: Essential Elements

An effective SMP should contain the following sections:

- Outline Description: Clearly defines the equipment, its purpose, operational environment, and expected capabilities.

- Safety Management System: Details the system’s objectives, managerial tasks, and responsible organisations.

- Responsibilities and Resources: Identifies key personnel and defines their roles through a RACI chart (Responsible, Accountable, Consulted, Informed).

- Audit Arrangements: Outlines internal and independent audit processes.

- Requirements and Acceptance Criteria: Defines safety requirements, targets, and the standards by which success will be measured.

- Safety Case Scope and Strategy: Lays out the assessment strategy and techniques to control hazards.

- Safety Programme: A comprehensive work plan linked to the Through Life Management Plan.

An example template for structuring your SMP can be found in Annexe A. Refer to Annexe B for a sample RACI chart to guide accountability and communication.

Warnings and Potential Project Risks

The SMP is the linchpin of project safety management. If not accurately maintained, the project may face unforeseen delays, increased costs, or compromised safety performance.

Common Pitfalls:

- Inadequate Detail: Missing out on key safety activities can lead to delays and escalated costs.

- Outdated Information: Failing to keep the SMP updated can result in misalignment with the actual safety activities.

- Insufficient Review: Lack of endorsement by the Project Safety Committee (PSC) may mean the plan does not accurately reflect stakeholder responsibilities.

These risks underscore the importance of a thorough, continuously updated SMP.

Procedure Completion and Review

The Project Safety Committee (PSC) is responsible for drafting, endorsing, and reviewing the SMP, ensuring that safety requirements and acceptance criteria are clearly defined and agreed upon by all parties.

Timing:

- Initial Production: Start as early as the Concept stage.

- Ongoing Updates: Review and update the SMP regularly, especially during key project milestones.

The SMP should be a living document that evolves as new information arises or project requirements change.

Safety Planning: Required Inputs

This procedure for Safety Planning requires inputs from:

- Outputs from procedure SMP01 – Safety Initiation;

- Outputs from procedure SMP02 – Safety Committee.

These inputs should be integrated with other management plans throughout the acquisition cycle.

Outputs:

The SMP’s outputs should feed into several project documents, including:

- System Requirements Document: Capture specific safety needs.

- Customer Supplier Agreement: Document mutual agreements on safety deliverables.

- Through Life Management Plan: Align with long-term safety management.

- Business Case Submissions: Support safety-related elements in decision-making processes.

All meeting minutes should reflect decisions made regarding the SMP’s development and upkeep.

Conclusion

The Safety Management Plan is the cornerstone of safety assurance in complex projects. Properly implemented, it serves as a robust framework to manage safety risks, ensure compliance, and maintain confidence in the system’s safety performance throughout its lifecycle.

By following the structure and content outlined in this guide, project teams can create a comprehensive, effective SMP that aligns with the highest standards of safety management.d up-issue.

Safety Planning: Annexe A - Template for a Safety Management Plan

TITLE

Title of equipment or system to be procured with the Requirement reference number.

DESCRIPTION

A brief description of the project, including its purpose and the environment it is to operate in. The scope of the project and interfaces with other equipment are also to be identified.

INVOLVEMENT OF SPECIALIST SAFETY ADVISORS

List any specialist advisors who need to be involved in the program and send them a copy of this plan where required. Such advisers should include internal advisors, external regulators, or statutory bodies that provide advice.

PROJECT SAFETY MANAGEMENT SYSTEM

A description of the Safety Management System within the Enterprise delivery team to include:

- The aims and objectives of the safety management system;

- Technical tasks to be undertaken and the organisation responsible for implementing them;

- Identification of project staff with responsibility for carrying out safety tasks. Include those who are to be issued with letters of delegation;

- Cross-reference to any relevant project safety documents or reports;

- A regime for internal or independent audits of the safety management system;

- Details of the project safety panel;

- Responsibilities, resources, and interfaces with Enterprise, contractor, and specialist advisors;

- Safety reviews, feedback, and reporting procedures;

- Transfer arrangements;

- Design changes;

- Contractor’s trials.

SAFETY REQUIREMENTS

- Safety requirements arising from legislation;

- Enterprise Certification requirements;

- Acceptance criteria;

- Safety requirements from the Requirement or;

- Safety targets;

- Safety-related standards to be applied, e.g. National Standards, Defence Standards, International Standards or overseas standards.

PROGRAMME OF WORK

Identify the tasks that will enable the safety requirements to be met and develop this into a schedule of work on a Gantt or PERT chart, linked to key stages in the Through Life Management Plan.

SAFETY CASE STRATEGY

This strategy should support the program of work above. It will give consideration to the types of analyses and testing to be carried out. It will define the scope of work of the safety case and the interfaces with associated equipment safety cases.

APPROVAL

This plan will be approved by a person with delegated authority.

DISTRIBUTION

Plan to be distributed to the management area with responsibility for in-service support. The plan will also be distributed to teams procuring equipment with which the project interfaces and or interacts.

Annexe B - RACI Chart example

The SMP should contain a RACI Chart to define which authority is Responsible, Accountable, Consulted, or Informed for each of the activities in the Safety Programme. A simple example is given below:

ActivitySafety Delegation HolderProject Safety ManagerIndependent Safety AuditorContractor Project Safety EngineerEquipment UserSafety Case PreparationARIRISafety Case EndorsementAIRIIHazard Log AdministrationAI-R-Safety Requirements PreparationAR-RC

Key: R – Responsible; A – Accountable; C – Consulted; I - Informed

Acknowledgement of Copyright

In this article, I have used material from a UK Ministry of Defence guide, reproduced under the terms of the UK’s Open Government Licence.

Comprehensive Project Safety Management Plans: What are Your Questions?

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience. I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.
#functionalsafetymanagementplanexample #gassafetymanagementplan #healthandsafetymanagementplandoc #healthandsafetymanagementplanexample #healthandsafetymanagementplantemplatenz #healthsafetymanagementplantemplate #ohssafetymanagementplan #safetymanagementplandefinition #safetymanagementplanexample #safetymanagementplanforconstruction #safetymanagementplaninmines #safetymanagementplantemplateqld #sitesafetymanagementplanexample #thelifesafetymanagementplanprovidesinformationandguidelinesforwhichofthefollowing #whatisthepurposeofasafetymanagementsystem
Simon Di Nucci https://www.safetyartisan.com/2024/10/16/comprehensive-project-safety-management-plans/


Project Safety Initiation
Project Safety Initiation
In 'Project Safety Initiation' we look at what you need to do to get your safety project or program started.

Introduction

Definitions

A stakeholder is anyone who will be affected by the introduction of the system and who needs to be consulted or informed about the development and fielding of the system, and anyone who contributes to the ultimate acceptance of the project.

We will look at the RACI chart of stakeholders under a later SMP. Top Tip

Project Safety Initiation: Objectives

This procedure describes the start-up of safety management activities on a project. It identifies safety stakeholders and legislative and other standards that need to be satisfied. The procedure also creates the key elements of the safety management organization for the project.

In normal circumstances, this procedure would be applied at the outset of a project, early in the Concept phase. However, it can be applied at any point of the life cycle where it is necessary to initiate a formal safety management process on an existing system. The procedure may also be re-applied at significant points in the life cycle (e.g. after Full Business Case approval), to review and update the project safety arrangements and ensure that they continue to be appropriate.

Remember that a Project delivers on a specific:a) Outcome, result or benefits, e.g. meeting requirements;b) Schedule; andc) Quality criteria, e.g. needed to realise benefits.Top Tip

Comprehensive Guide to Safety Management Procedure Initiation

Safety management is critical to any project, especially those involving complex systems with safety and environmental implications. This procedure outlines the early-stage safety processes that should be followed, assuming that the Program Director has already been appointed and safety responsibilities have been delegated to a competent team member within the delivery team. The goal of safety initiation is to ensure that safety management starts on a firm basis, identifying crucial stakeholders, regulatory authorities, and internal teams responsible for safety and environmental protection.

In this article, we will provide an in-depth understanding of the safety initiation process, stakeholder identification, project safety organization creation, compliance considerations, and necessary documentation.

Purpose of Safety Initiation

The primary objective of safety initiation is to commence the safety management process by:

- Identifying stakeholders, regulators, and approval authorities.

- Appointing a Project Safety Manager (PSM) and, if required, an Independent Safety Auditor (ISA).

- Forming the Project Safety Committee (PSC).

- Ensuring compliance with safety and environmental regulations and creating a responsible, accountable, consulted, informed (RACI) chart.

This procedure helps mitigate risks to project timelines, cost, and overall safety by ensuring safety requirements are identified and met early in the project lifecycle.

All applicable factors need to be lined up to ensure the success of a safety project or program.Top Tip

Project Safety Initiation: How It's Done

1. Stakeholder Identification in Safety Initiation

The identification of stakeholders is crucial. Stakeholders include any individuals or groups impacted by the project’s development or operation, as well as those responsible for the project's approval and compliance. This may include industry professionals, regulatory bodies, and environmental authorities. Here’s how to systematically identify and involve relevant stakeholders:

Who Are the Stakeholders?

A stakeholder is defined as anyone affected by the system or involved in its acceptance, including:

- Individuals who are responsible for safety at any stage of the project.

- Groups or individuals with safety information or requirements relevant to the project.

- Subject Matter Experts (SMEs) with specialized knowledge critical to project safety.

Consulting Key Stakeholders

At a minimum, the following must be consulted:

- Project Sponsor (e.g., Director of the End Users’ Business Unit).

- Equipment Users who will be directly affected.

- Director Technical responsible for the technical aspects of the project.

- Safety & Environmental Protection Group tasked with compliance.

- Other Delivery Teams involved with subsystems or associated projects.

After identifying stakeholders, record their involvement and details in Form SMP01/F/02 - Register of Stakeholder Requirements and Information. External stakeholders such as other government departments or industry experts should also be logged into the communication plan. For complex projects, develop a communication plan outlining stakeholder contact details, responsibilities, and relevant security considerations.

It may be helpful to rename the project communication plan the Project Stakeholder Management Plan - what do you need from stakeholders for your Project to succeed?Top Tip

2. Ensuring Compliance with Safety Regulations

Compliance with safety and environmental regulations is a critical responsibility of the Delivery Team. The following methods ensure compliance across various safety aspects:

Key Compliance Strategies:

- System Specifications: Delivery Teams develop specifications to meet user requirements, ensuring safety and environmental standards are incorporated.

- Through Life Management Plan (TLMP): This plan outlines the long-term impact of safety and environmental legislation on equipment.

- Enterprise Guidance: Use internal guidelines when creating contracts to include safety and environmental performance targets.

Sources for Regulatory and Legislative Information:

To maintain compliance with safety and environmental legislation, teams can access a wide range of resources, including:

- Legislative registers held by the program teams.

- Defense Regulator intranet pages.

- Health & Safety Executive publications and other professional societies.

- Suppliers, contractors, and consultants with expertise in safety and environmental law.

The Delivery Team must identify applicable legislation at the start of the project and continuously update a legislative register as part of the Safety Case.

For more information on this vital task, see the post on System Requirements Hazard Analysis here.Top Tip

3. Creating a Project Safety Organization

Establishing a robust safety management structure is essential to ensure compliance with safety standards and regulations. The Safety Management Plan (SMP) will eventually document the project’s entire safety organization, but before that, some key safety roles need to be defined.

Steps to Set Up Project Safety Organization:

Develop a Project Safety RACI Chart: This chart defines who is Responsible, Accountable, Consulted, and Informed at different stages of the safety process.

Appoint a Competent Project Safety Manager (PSM): This individual is responsible for overseeing safety management throughout the project.

Appoint an Independent Safety Auditor (ISA): For complex or high-risk projects, appointing an ISA is advisable. The ISA ensures that safety audits are conducted independently.

Form a Project Safety Committee (PSC): This group will be responsible for monitoring and governing safety issues within the project.

3. Ensuring Compliance with Safety Regulations

Compliance with safety and environmental regulations is a critical responsibility of the Delivery Team. The following methods ensure compliance across various safety aspects:

Key Compliance Strategies:

- System Specifications: Delivery Teams develop specifications to meet user requirements, ensuring safety and environmental standards are incorporated.

- Through Life Management Plan (TLMP): This plan outlines the long-term impact of safety and environmental legislation on equipment.

- Enterprise Guidance: Use internal guidelines when creating contracts to include safety and environmental performance targets.

Sources for Regulatory and Legislative Information:

To maintain compliance with safety and environmental legislation, teams can access a wide range of resources, including:

- Legislative registers held by the program teams.

- Defense Regulator intranet pages.

- Health & Safety Executive publications and other professional societies.

- Suppliers, contractors, and consultants with expertise in safety and environmental law.

The Delivery Team must identify applicable legislation at the start of the project and continuously update a legislative register as part of the Safety Case.

4. Safety Documentation and Records

Documenting safety processes ensures accountability and maintains a clear safety management trail. These records feed into critical project documentation, including:

- System Specification: Defines specific safety requirements.

- Customer-Supplier Agreement: Documents agreements on safety information.

- Through Life Management Plan (TLMP): Outlines the ongoing safety and environmental impact.

- Safety Elements in Business Case Submissions: Ensures all safety-related information is considered in formal project submissions.

Outputs to Record:

Appointed PSM and ISA, if appropriate;

SMP01_F_01 - Safety Operating Environment QuestionnaireDownload

SMP01_F_02 - Register of Stakeholder Requirements and InformationDownload

SMP01_F_03 - Register of Safety Legislation and Other Significant RequirementsDownload

Proper documentation supports future audits, stakeholder engagement, and compliance efforts. Competent to perform the required responsibilities.

5. Importance of Competence in Safety Management

Competence in safety management is key to project success. The competence of the PSM and ISA must be demonstrated and documented to assure that they can effectively discharge their safety responsibilities.

Consequences of Incompetence or Delays:

Failure to appoint competent individuals or delay the initiation of safety management procedures can lead to:

- Increased risk to project timelines and costs.

- Delayed engagement with stakeholders.

- Overlooked safety and environmental requirements.

Conclusion: Importance of Early Safety Management Initiation

Initiating a structured safety management process at the early stages of a project is crucial for ensuring compliance with safety and environmental standards. By identifying stakeholders, setting up a robust safety organization, ensuring compliance, and maintaining accurate documentation, the project minimizes risks, avoids delays, and maintains clear communication with all involved parties.

Project Safety Initiation: Timing

Initial Application

In an acquisition program, the procedure should be carried out early in the Concept phase.  Stakeholders, system boundaries, supporting systems/arrangements, and acceptance authorities need to be identified as early as possible to support the subsequent Preliminary Hazard Identification activity (Procedure SMP04 – Preliminary Hazard Identification) and the preparation of the SMP.

The procedure can be applied at any point of the life cycle where it is necessary to initiate a formal safety management process.

Review

The registers of stakeholders and requirements should be reviewed and updated after the Outline Business Case and Full Business Case as part of the review and update of the SMP.

New Safety Managers could also use this as a take-over checklist, to make sure all necessary decisions have been made and clearly documented.Top Tip

Acknowledgment of Copyright

In this article, I have used some material from a UK Ministry of Defence guide, reproduced under the terms of the UK’s Open Government Licence.

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience, I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.
#EnvironmentalSafetyRegulations #IndependentSafetyAuditor(ISA) #LegislativeComplianceinProjects #projectandstakeholdermanagement #projectcharterstakeholderlistexample #projectgovernancestakeholdermanagement #projectmanagementstakeholderlist #ProjectSafetyOrganization #projectstakeholderanalysisexample #projectstakeholdercommunicationplan #projectstakeholderlisttemplate #projectstakeholdermanagementbestpractices #projectstakeholderregisterexample #SafetyCompliance #SafetyDocumentation #SafetyManagementPlan(SMP) #SafetyManagementProcess #SafetyRACIChart #StakeholderIdentification #whoisprojectstakeholder
Simon Di Nucci https://www.safetyartisan.com/2024/10/02/project-safety-initiation/


Understanding Your Risk Assessment Standard
Understanding Your Risk Assessment Standard
When Understanding Your Risk Assessment Standard, we need to know a few things. The standard is the thing that we're going to use to achieve things - the tool. And that's important because tools designed to do certain things usually perform well. But they don’t always perform well on other things. So we will ask, ‘Are we doing the right thing?’ And ‘Are we doing it right?’

This post is part of a series:

- Intro to System Safety Risk Assessment

- Start of System Safety Risk Assessment

- Hazard & Risk Basics (SSRAP Module 1)

- System safety risk analysis (SSRAP Module 2)

Video Highlights

Understanding Your Standard: Highlights

Transcript

What and Why?

So, what will we do and why are we doing it? First, the use of safety standards is very common for many reasons. It helps us to have confidence that what we're doing is good enough. We've met a standard of performance in the absolute sense. It helps us to say, ‘We've achieved standardization or commonality in what we're doing’.

We can also use it to help us achieve a compromise. That can be a compromise across different stakeholders or different organizations. Standardization gives us some of the other benefits as well. If we're all doing the same thing rather than we're all doing different things, it makes it easier to train staff. This is one example of how a standard helps.

However, we need to understand this tool that we're going to use. What it does, what it's designed to do, and what it is not designed to do. That's important for any standard or any tool. In safety, it's particularly important because safety is, in many respects, an intangible. This is because we're always looking to prevent a future problem from occurring. In the present, it's a little bit abstract. It's a bit intangible. So, we need to make sure that conceptually what we're doing makes sense and it's coherent. That it works together. If we look at those five bullet points there, we need to understand the concept of each standard. We need to understand the basis of each one.

They’re not all based on the same concept. Thus, some of them are contradictory or incompatible. We need to understand the design of the standard. What the standard does, what the aim of the standard is, and why it came into existence. And who brought it into existence. To do what for whom - who's the ultimate customer here?

For risk analysis standards, we need to understand what kind of risks they address. Because the way you treat a financial risk might be very different from a safety risk. In the world of finance, you might have a portfolio of products, like loans. These products might have some risks associated with them. One or two loans might go bad, and you might lose money on those. But as long as the whole portfolio is making money, that might be acceptable to you. You might say, ‘I'm not worried about that 10% of my loans have gone south and all gone wrong. I'm still making plenty of profit out of the other 90%.’ It doesn't work that way with safety. You can't say ‘It's OK that I've killed a few people over here because all this a lot over here are still alive!’. It doesn't work like that!

Also, what kind of evidence does the standard produce? Because in safety, we are very often working in a legal framework that requires us to do certain things. It requires us to achieve a certain level of safety and prove that we have done so. So, we need certain kinds of evidence. In different jurisdictions and different industries, some evidence is acceptable. Some are not. You need to know which is for your area. And then finally, let's think about the pros and cons of the standard. What does it do well? And what does it do not so well?

System Safety Pedigree

We're going to look at a standard called Military Standard 882E. This standard was first developed several decades ago. It was created by the US government and military to help them bring into service complex, cutting-edge military equipment. Equipment that was always on the cutting edge. That pushes the limits of what you can achieve in performance.

That’s a lot of complexity. Lots of critical weapon systems, and so forth. So they needed something that could cope with all that complexity. It's a system safety engineering standard. It's used by engineers, but also by many other specialists. As I said, it's got a background in military systems. These days, you find these principles used pretty much everywhere. So, all the approaches to System Safety that 882 introduced are in other standards. They are also in other countries.

It addresses risks to people, equipment, and the environment, as we heard earlier. And because it's an American standard, it's about system safety. It's very much about identifying requirements. What do we need to happen to get safety? To do that, it produces lots of requirements. It performs analyses of all those requirements and generates further requirements. And it produces requirements for test evidence. We then need to fulfill these requirements. It's got several important advantages and disadvantages. We're going to discuss these in the next few slides...

This is Module 3 of SSRAP

'Understanding Your Risk Assessment Standard' is Module 3 of the System Safety Risk Assessment Program (SSRAP) Course. Risk Analysis Programs – Design a System Safety Program for any system in any application.

The full course comprises 15 lessons and 1.5 hours of video content, plus resources. It's on pre-sale at HALF PRICE until September 1st, 2024. Check out all the free preview videos here and order using the coupon “Pre-order-Half-Price-SSRAP”. But don't leave it too long because there are only 100 half-price courses available!

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience. I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.
#Achievingcomprehensivesystemsafetyassurance #Benefitsofusingsafetystandardsforcomplexsystems #Bestpracticesformanagingsafetyrisks #Bestsystemsafetyengineeringstandard #Comprehensivesafetyanalysistoolsandsoftware #Developinganeffectivesafetyprogram #Effectivehazardidentificationandanalysismethods #Ensuringhighperformancesystemsafety #Howtoimplementsystemsafetyriskanalysisprograms #Implementingengineeringsafetystandards #Legalsafetycompliancetoolsandresources #Meetingcomplexsystemsafetyrequirements #Meetingsafetyrequirementsforhighrisksystems #Safetystandardsformilitaryequipmentsystems #Systemsafetysolutionsforlargeprograms #Tailoringsystemsafetyprogramsforspecificneeds #Toolsforimplementingsafetystandardseffectively #Topriskanalysisstandardsforsafetyprograms #Understandingthepedigreeofsystemsafetystandards #WheretobuyMilitaryStandard882Ecompliancetools
Simon Di Nucci https://www.safetyartisan.com/2024/08/28/understanding-your-risk-assessment-standard/


System Safety Risk Analysis
System Safety Risk Analysis
In this module, System Safety Risk Analysis, we're going to look at how we deal with the complexity of the real world. We do a formal risk analysis because real-world scenarios are complex. The Analysis helps us to understand what we need to do to keep people safe. Usually, we have some moral and legal obligation to do it as well. We need to do it well to protect people and prevent harm to people.

This post is part of a series:

- Intro to System Safety Risk Assessment

- Start of System Safety Risk Assessment

- Hazard & Risk Basics (SSRAP Module 1)

- This is SSRAP Module 2.

Aim: How do we deal with real-world complexity?

- What is System Safety?

- The Need for Process;

- A Realistic, Useful, Powerful process:

- Context, Communication & Consultation;

- Monitoring & Review, Risk Treatment; and

- Required Risk Reduction.

Transcript: System Safety Risk Analysis

What is System Safety?

To start with, here’s a little definition of system safety. System safety is the application of engineering and management principles, criteria, and techniques to achieve acceptable risk within a wider context.

This wider context is operational effectiveness - we want our system to do something. That's why we're buying it or making it. The system has to be suitable for its use. We've got some time and cost constraints, and we've got a life cycle. We can imagine we are developing something from concept, from cradle to grave.

And what are we developing? We're developing a system. An organization of hardware (or software) material, facilities, people, data, and services. All these pieces will perform a designated function within the system. The system will work within a stated or defined operating environment. It will work to produce specified results.

We've got three things here: a system; the operating environment in which it is designed to work; and, we have its function or application. Why did we buy it, or make it in the first place? What's it supposed to do? What benefits is it supposed to bring humankind? What does it mean in the context of the big picture?

That's what a system is. I'm not going to elaborate on systems theory or anything like that. That's a whole big subject on its own. But we're talking about something complex. We're not talking about a toaster. It's not consumer goods. It's something complicated that operates in the real world. And as I say, we need to understand those three things - system, environment, purpose - to work out Safety.

This is Module 2 of SSRAP

This is Module 2 from the System Safety Risk Assessment Program (SSRAP) Course. Risk Analysis Programs – Design a System Safety Program for any system in any application.

The full course comprises 15 lessons and 1.5 hours of video content, plus resources. It's on pre-sale at HALF PRICE until September 1st, 2024. Check out all the free preview videos here and order using the coupon “Pre-order-Half-Price-SSRAP”. But don't leave it too long because there are only 100 half-price courses available!

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience. I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.
#AcceptableRiskCriteria #ALARPPrinciple #ApplyingtheALARPprinciple #Comprehensivesafetyengineeringtraining #Effectiveriskmitigationstrategies #HazardIdentificationandControl #Identifyandcontrolsafetyhazards #LearnSystemSafetyRiskAnalysis #Methodsforriskreductioninsafety #Onlinetrainingforsystemsafetyprofessionals #RealWorldRiskAnalysis #Realworldriskanalysistechniques #RiskMatrixApproach #RiskMitigationTechniques #RiskReductionMethods #SafetyEngineeringPrinciples #SystemSafetyRiskAnalysis #SystemSafetyTrainingOnline #Understandingacceptableriskcriteria #Usingariskmatrixforsafetyanalysis
Simon Di Nucci https://www.safetyartisan.com/2024/08/14/system-safety-risk-analysis/


Hazard and Risk Basics
Hazard and Risk Basics
What are the Hazard and Risk basics? So, what is this risk analysis stuff all about? What is 'risk'? How do you define or describe it? How do you measure it? When? Why? Who...?

In this free session, I explain the basic terms and show how they link together, and how we can break them down to perform risk analysis. I understand hazards and risks because I've been analyzing them for a long time. Moreover, I've done this for aircraft, ships, submarines, sensors, command-and-control systems, and lots of software!

Everyone does it slightly differently, but my 25+ years of diverse experience lets me focus on the basics. That allows me to explain it in simple terms. I've unpacked the jargon and focused on what's important.  

This post is part of a series:

- Intro to System Safety Risk Assessment

- Start of System Safety Risk Assessment

- This post is SSRAP Module 1

- System safety risk analysis (SSRAP Module 2)

-

https://youtu.be/dd30bczHlaI
Recap: Risk Basics

Topics: Hazard and Risk Basics

- Risk & Mishap;

- Probability & Severity;

- Hazard & Causal Factor;

- Mishap (accident) sequence; and

- Hazards: Tests & Example

Transcript: Hazard and Risk Basics

Let's get started with Module One. We're going to recap some Risk basics to make sure that we have a common understanding of risk. And that's important because risk analysis is something that we do every day. Every time you cross the road, or you buy something expensive, or you decide whether you're going to travel to something, or look it up online, instead.

You're making risk analysis decisions all the time without even realizing it. But we need something a little bit more formal than the instinctive thinking of our risk that we do all the time. And to help us do that, we need a couple of definitions to get us started.

What is Risk?

First of all, what is Risk? It's a combination of two things. First, the severity of a mishap or accident. Second, the probability that the mishap will occur. So it's a combination of severity and probability. We will see that illustrated in the next slide.

We'll begin by talking about ‘mishap’. Well, what is a mishap? A mishap is an event - or a series of events -resulting in unintentional harm. This harm could be death, injury, occupational illness, damage to or loss of equipment or property, or damage to the environment.

The particular standard we're looking at today covers a range of different harms. That's why we're focused on safety. And the term 'mishap' will also include negative environmental impacts from planned events. So, even if the cause is a deliberate event, we will include that as a mishap.

Probability and Severity

I said that the definition of risk was a combination of probability and severity. Here we got a little illustration of that...

This is Module 1 of SSRAP

This is Module 1 from the System Safety Risk Assessment Program (SSRAP) Course. Risk Analysis Programs – Design a System Safety Program for any system in any application.

The full course comprises 15 lessons and 1.5 hours of video content, plus resources. It's on pre-sale at HALF PRICE until September 1st, 2024. Check out all the free preview videos here and order using the coupon “Pre-order-Half-Price-SSRAP”. But don't leave it too long because there are only 100 half-price courses available!

Meet the Author

Learn safety engineering with me, an industry professional with 25 years of experience, I have:

•Worked on aircraft, ships, submarines, ATMS, trains, and software;

•Tiny programs to some of the biggest (Eurofighter, Future Submarine);

•In the UK and Australia, on US and European programs;

•Taught safety to hundreds of people in the classroom, and thousands online;

•Presented on safety topics at several international conferences.
#howtoriskassessment #howtoriskassessmentanalysis #learnriskassessment #learnriskassessmentanalysis #riskassess #riskassessment #riskassessmentanalysistechnique #riskassessmentanalysistraining #riskassessmentanalysistutorial #riskassessmenteducation #riskassessmentequation #riskassessmentguide #riskassessmentkeypoints #riskassessmentoutline #riskassessmentquestionstoask #riskassessmentskills #riskassessmenttechnique #riskassessmenttraining #riskassessmenttutorial #riskassessmentvideo #riskmanagement31000pdf
Simon Di Nucci https://www.safetyartisan.com/2024/07/31/ssrap-module-1-risk-basics/

Saturday, December 27, 2025



Guide to the WHS Act
Guide to the WHS Act
This Guide to the WHS Act covers many topics of interest to system safety and design safety specialists. The full-length video explains the Federal Australian Work Health and Safety (WHS) Act (latest version, as of 14 Nov 2020). Brought to you by The Safety Artisan: professional, pragmatic, and impartial.

https://youtu.be/Yzkl3vCVYv8
This is the four-minute demo of the full, 44-minute-long video.

see the full-length video here

Recap: In the Short Video...

... which is here, we looked at:

- The Primary Duty of Care; and

- Duties of Designers.

Topics: Guide to the WHS Act

In this full-length video, we will look at much more…

- § 3, Object ;

- § 4-8, Definitions;

- § 12A, Exclusions;

- § 18, Reasonably Practicable;

- § 19, Primary Duty of Care;

- § 22-26, Duties of Designers, Manufacturers, Importers, Suppliers & those who Install/Construct/Commission;

- § 27, Officers & Due Diligence;

- § 46-49, Consult, Cooperate & Coordinate;

- § 152, Function of the Regulator; and

- § 274-276, WHS Regulations and CoP.

Transcript: Guide to the WHS Act

Click here for the Transcript
Hi everyone and welcome to the Safety Artisan. Where you will find instructional videos like this one with professional, pragmatic and impartial advice which we hope you enjoy. I’m Simon and I’m recording this on the 13th of October 2019. Today we’re going to be talking about the Australian Federal Work Health and Safety Act. I call it an unofficial guide or system or design safety practitioners (whatever you want to call yourselves). I’m looking at the WHS Act from the point of view of system safety and design safety.

 As opposed to managing the workplace although it does that as well. I recorded a short video version of this. In that, we looked at the primary duty of care and the duty of designers. We spent some time looking at that and that video is available. It’s available at safetyartisan.com and you can watch it on YouTube. So just search for safety artisan on YouTube.

Topics

So, in this video, we’re going to look at much more than that. I say selected topics we’re not going to look at everything in the WHS Act. As you can see there are several hundred sections of it. We’ll be here all day. So, what we’re going to look at are things that are relevant to systems safety to design safety. So, we look very briefly at the object of the act, at what it’s trying to achieve. Just one slight of definitions because there’s a lot of exclusions because the Act doesn’t apply to everything in Australia.

 We’re going to look at the Big Three involved. So really the three principles that will help us understand what the act is trying to achieve is:

- what is reasonably practicable. That phrase that I’ve used several times before.

- What is the primary duty of care so that sections 18 and 19. And if we jump to

- Section 27 What are or who are officers and what does due diligence mean in a WHS setting?

So, if I step back to Sections 22 to 26 you know the duties of various people in the supply chain.  We cover that in the short session. So, go ahead and look at that and then moving on. There are requirements for duty holders to consult cooperate and coordinate. Then there's a brief mention of the function of the regulator. And finally, the WHS Act enables WHS regulations and codes of practice. So we’re just mentioned that so those are the topics we’re going to cover quite a lot to get through. So that’s critical.

Disclaimer

So, first, this is a disclaimer from the website from the federal legislation site. It does remind people looking at the site that the information put up there is for the benefit of the public and it’s free of charge.

 So, when you’re looking at this stuff you need to look at the relevance of the material for your purposes. OK, I’m looking at the Web site. It is not a substitute for getting legal or appropriate professional advice relevant to your particular circumstances. So quick disclaimer there. This is just a way a website with general advice. Hence, this video is only as good as the content that’s being presented okay?

The Object of the Act

So, the object of the act, then. I’m quoting from it because I’m using quotation marks, so the main object of the act is to provide a balanced and nationally consistent framework for the health and safety of workers and workplaces.

 And that’s important in Australia because Australia is a federated state. So, we’ve got states and territories and we’ve got the federal government or the Commonwealth as it’s usually known. The laws all those different bodies do not always line up. In fact, sometimes it seems like the state and territories delight in doing things that are different from the Commonwealth. And that’s not particularly helpful if you’re trying to operate in Australia as a corporation. Or if you’re trying to do something big and trying to invest in the country.

 So, the WHS act of a model WHS Act was introduced to try and harmonize all this stuff. And you’ll see some more about that on the website. By the way and I’ve missed out on some objectives. As you can see, I’m not doing one subset B to H go to have a look at it online. But then in Section 2 The reminder is the principle of giving the highest level of protection against harm to workers and other persons as is reasonably practicable. Wonderful phrase again which will come back to okay.

Definitions

 Now there are lots of definitions in the act. And it’s worth having a look at them particularly if you look at the session that I did on system safety concepts. There I was using definitions from the UK standard. Now I did that for a reason because that set of definitions was very well put together. So it was ideal for explaining those fundamental concepts where the concepts in Australia WHS are very different. If you are operating in Australian jurisdiction or you want to sell into an Australian jurisdiction do look at those definitions. Being aware of what the definitions are will actually save you a lot of hassle in the long run.

 Now because we’re interested systems safety practitioners of introducing complex systems into service. I’ve got the definitions here of plant structure and substance. So basically, plant is any machinery equipment appliance container implement or to any component of those things and anything fitted or connected to any of those things. So, they go going for pretty a pretty broad definition. But bearing in mind we’re talking about plants we’re not talking about consumer goods. We’re not talking about selling toasters or electric toothbrushes to people. OK. There’s other legislation that covers consumer goods.

 Then when it comes to structure again, we’ve got anything that is constructed be fixed or movable temporary or permanent. And it might include things on the ground towers and masks underground pipelines infrastructure tunnels and mining any components or parts thereof. Again, a very broad definition and similarly substance any natural or artificial substance in whatever form it might be. So again, very broad and as you might recall from the previous session a lot of the rules for designers’ manufacturers, importers and suppliers cover plant structure and substances. So hence that’s why I picked just those three definitions out of the dozens there.

Exclusions

 It’s worth mentioning briefly exclusions: what the Act does not apply to. So, first, the Act does not apply to commercial ships basically. So, in Australia, the Federal legislation covering the safety of people in the commercial maritime industry is the Occupational Health and Safety Act (Maritime Industry) 1993, which is usually known as “OSHMI” applies to commercial vessels, so WHS does not. And the second exclusion is if you are operating an offshore petroleum or greenhouse gas storage platform and I think it’s more than three nautical miles offshore.

 But don’t take my word for that if you’re in that business go and check with the regulator NOPSEMA then this act the Offshore Petroleum and Greenhouse Gas Storage Act 2006 applies or OPGGS for short. So, if you’re in the offshore oil industry then you’ve got a separate Commonwealth act plot but those are the only two exceptions. So, where Commonwealth law applies the only things that WHS. does not apply to is commercial ships and offshore platforms I mentioned state and territory vs. Commonwealth. All the states and territories have adopted the model WHS system except Victoria which so far seems to be showing no interest in adopting WHS.

 Thanks, Victoria, for that. That’s very helpful! Western Australia is currently in process of consultation to adopt WHS, but they’ve still got their current OH&S legislation. So just note that there are some exclusions there. OK so if you’re in those jurisdictions then WHS does not apply. And of course, there are many other pieces of legislation and regulation that cover particular kinds of risk in Australia. For example, there’s a separate act called ARPANS that covers ionizing a non-ionizing radiation.

There are many other acts that cover safety and environmental things. Let’s go back one when I’m talking about those specific acts. They only apply to specific things whereas WHS act is a general Act applies to everything except those things that it doesn’t like to write move on.

So Far As is Reasonably Practicable

Okay now here we come to one of these three big ticket items and I’ve got two slides here. So, in this definition of reasonably practicable when it comes to ensuring health and safety reasonably practicable means doing what you are reasonably able to do to achieve the high standards of health safety in place.

 Considering and weighing up all the relevant matters; including, say, the first two we need to think about the likelihood of a hazard or risk. How likely is this thing to occur as a potential threat to human health? And what’s the degree of harm that might result from the hazard or risk? We’ve got a likelihood and degree of harm or severity. If we recall the fundamental definition of risk is that it’s though it’s the factor of those two things taken together. So, in this first part, we’re thinking about what is the risk.

 And it’s worth mentioning that hazard is not defined in the Act and risk is very loosely defined. So, the act is being deliberately very broad here. We’re not taking a position on or style of approach to describing risks, so to the second part.

Having thought about the risk now we should consider what the person PCBU or officer, whoever it might be, ought reasonably to know about the hazard or risk and the ways of eliminating or minimizing the risks. So, what we should know about the risk and the ways of dealing with it of mitigating it of controlling and then we’ve got some more detail on these ways of controlling the risk.

 We need to think about the availability and suitability of ways to eliminate or minimize the risk. Now I’m probably going to do a separate session on reasonably practicable because there is a whole guidebook on how to do it. So, we’ll go through that and at some stage in the future and go through that step by step about how you determine availability and suitability et cetera. And so, once you get into it it’s not too difficult. You just need to follow the guidelines which are very clear and very well laid out.

 So having done all of those things, after assessing the extent of the risk and the available ways of controlling it the we can then think about the cost associated with those risk controls and whether the cost of those controls is grossly disproportionate to the risk. As we will see later, in the special session, if the cost is grossly disproportionate to the risk reduction then it’s probably not reasonable to do it. So, you don’t necessarily have to do it but we will step back and just look at the whole thing.

So, in a and b we’re looking at the likelihood and severity of the risk so and we’re (quantifying or qualitatively) assessing the risk. We’re thinking about what we could do about it, how available and suitable are those risk controls, and then putting it all together. How much will it cost to implement those risk controls and how reasonably practicable to do so. So what we have here is basically a risk assessment process that leads us to a decision about which controls we need to implement in order to achieve that ‘reasonably practicable’ statement that you see in so many parts of the act and indeed it’s also in the definition itself.

 So, this is how we determine what is reasonably practicable. We follow a risk assessment process. There is a risk assessment Code of Practice, which I will do a separate session on. It gives you a basic minimum risk assessment process to follow that will enable us to decide what is reasonably practicable. Okay, quite a big topic there. And as I say we’ll come back and do a couple more sessions on how to determine reasonably practical. Let's move on to the primary duty of care we covered in the short session.

The Primary Duty of Care

 So I’m not really going to go through this again but basically our primary duty is to ensure so far as is reasonably practicable the health and safety of workers, whether we’ve engaged them whether we’ve got somebody else to engage them or whether we are influencing or directing people carrying out the work. We have a primary duty of care if we’re doing any of those things. And secondly, it’s worth mentioning that the person conducting a business or undertaking the PCBU must ensure the health and safety of other people. Say, visitors to the workplace are members of the public who happen to be near the workplace.

 And of course, bearing in mind that this law applies to things like trains and aircraft if you have an accident with your moving vehicle or your plant you could put people in danger – in the case of aeroplanes anywhere in Australia and beyond. So, it’s not just about the work, the workers in the workplace. With some systems, you’ve got a very onerous responsibility to protect the public depending on what you’re doing. Now for a little bit more detail that we didn’t have in the short session. When we say we must ensure health and safety we’re talking about the provision and maintenance of a safe work environment or safe plant structures or safe systems of work talking about safe use handling and storage of structures and substances.

 We’re talking about adequate facilities for workers that are talking about the provision of information, training, instruction or supervision. Those workers and finally the health of workers and conditions of the workplace are monitored if need be for the purpose of preventing illness or injury. So, there should be some general monitoring of health and safety-related incidents. And if you’re dealing with certain chemicals or are you intentionally exposing people to certain things you may have to conduct special monitoring looking for contamination or poisoning of those people whatever it may be. So, you’ve got quite a bit of detail there about what it means to carry out the primary duty of care.

 And this is all consistent with the duties that we’ve talked about on designers, manufacturers, importers, and suppliers and for all these things there are codes of practice giving guidance on how to do these things. So, this whole work health and safety system is well thought through, put together, in that the law says you’ve got to do this. And there are regulations and codes of practice giving you more information on how you can fulfil your primary directive and indeed how you must fulfill your primary duty.

 And then finally there’s a slightly unusual part for at the end and this covers the special case where workers need to occupy accommodation under the control of the PCBU in order to get the job done. So you could imagine if you need workers to live somewhere remote and you provided accommodation then there are requirements for the employer to take care of those workers and maintain those premises so that they not exposed to risks.

 That’s a big deal because she might have a remote plant, especially in Australia which is a big place and not very well populated. You might be a long way away from external help. So if you have an emergency on-site you’re going to have to provide everything (not just an emergency you need to do that anyway) but if you’ve got workers living remotely as often happens in Australia you’ve got to look after those workers in a potentially very harsh environment.

And then finally it’s worth mentioning that self-employed persons have got to take care of their own health and safety. Note that a self-employed person is a PCBU, so even self-employed people have a duty of care as a PCBU.

The Three Duties

OK, sections 22 to 26. Take that primary duty of care and elaborate it for designers and manufacturers, importers and suppliers and for those installing constructing or commissioning plant substances and structures. And as we said in the free session all of those roles all of the people BCBS is doing that have three duties they have to ensure safety in a workplace and that includes you know designing and manufacturing the thing and ensuring that it’s safe and meets Australian regulations and obligations.

 We have a duty to test which actually includes doing all the calculations analysis and examination that’s needed to demonstrate safety and then to provide needed information to everybody who might use or come into contact with the system so those three duties apply consistently across the whole supply chain. Now we spent some time talking about that. We’re going to move on OK, so we are halfway through. So, a lot to take in. I hope you’re finding this useful and enjoying this. Let’s move on. Now this is an interesting one.

Officers of the PCBU

Officers of the PCBU have additional duties and an officer of the PCBU might be a company director. That’s explicitly included in the definition. A senior manager somebody who has influence. Offices of the PCBU must exercise due diligence. So basically, the implied relationship is you’ve got a PCBU, you’ve got somebody directing work whether it be design work manufacturing operating a piece of kit whatever it might be. And then there are more senior people who are in turn directing those PCBUs (the officers) so the officers must exercise due diligence to ensure that the PCBUs comply with their duties and obligations.

Sections 2 to 4 cover penalties for offices if they fail. I’m not going to discuss that because as I’ve said elsewhere on the Safety Artisan website, I don’t like threatening people with penalties because I actually think that results in poor behavior, it actually results in people shirking and avoiding their duties rather than embracing them and getting on with it. If you frighten people or tell them what’s going to happen to them, they get it wrong. So, I’m not going to go there. If you’re interested you can look up the penalties for various people, which are clearly laid out. We move on to Section 5.

Due Diligence

 We’re now talking about what is due diligence in the context of health and safety. OK, I need to be precise because the term due diligence appears in other Australian law in various places meaning various things, but here this is the definition of due diligence within the WHS context. So, we’ve got six things to do in order to demonstrate due diligence.

So, officers must acquire and keep up to date with knowledge of work health and safety matters obligations and so forth. Secondly, officers must gain an understanding of the nature of the operations of the piece and risks they control.  So, if you’re a company director you need to know something about what the operation does. You cannot hide behind “I didn’t know” because it’s a legal requirement for you to do it. So that closes off a whole bunch of defenses in court.
#arehealthandsafetypolicieslegallyenforceable #AustralianWHS #Guidance #Guide #healthandsafetyandriskassessment #healthandsafetyandworkact #healthandsafetyhazardsintheworkplace #healthandsafetykeypoints #healthandsafetylegislationisdesignedtoprotect #healthandsafetyvocabularypdf #healthorsafetyissues #howhealthandsafetylawaffectbusiness #howhealthandsafetyrulesaffectyou #riskassessment #riskmanagement #safetytraining #whatarehealthandsafetyguidelines #whathealthandsafetylegislation #WHS #workhealthsafety2011
Simon Di Nucci https://www.safetyartisan.com/2023/04/26/guide-to-whs/


Intro to Work Health and Safety
Intro to Work Health and Safety
This Intro to Work Health and Safety (WHS) video looks at Australian legislation that is relevant to System Safety.

When I moved from the UK to Australia in 2012, I had to learn a new legal framework as a safety engineer. I was delighted to find that Australia had taken the principles of UK health and safety law, and crafted a simple, elegant, and readable set of legislation.

In Australia, WHS law applies not just to the workplace, but to designers, manufacturers, importers, and suppliers of plant, substances, and structures. In other words, it covers design and product safety as well.

This short video, and the full-length version, should be helpful to system, functional, and design safety practitioners.  It looks at the three classes of 'upstream' safety duties of designers, that also apply to manufacturers, importers, suppliers those who install/commission plant substances and structures. 

Intro to Work Health and Safety: so What?

Many people think the WHS Act only applies to the management of safety in the workplace. They’re wrong – it does much more than that. In this short presentation, I am going to show you why the WHS Act is relevant to those with 'upstream' safety responsibilities such as designers.

Intro to Work Health and Safety: Topics

- The primary duty of care;

- Safety duties of designers (Section 21); and

- Similar duties apply to others, such as:

- Manufacturers (Section 23);

- Importers (Section 24);

- Suppliers (Section 25);

- Those installing, constructing or commissioning (Section 26);

- Officers (Section 27); and

- Workers (Section 28).

Intro to Work Health and Safety: Transcript

Click Here for the Transcript
Hi everyone and welcome to the Safety Artisan where you will find Professional, pragmatic And impartial Instruction on safety. Which we hope you enjoy. So today we’re talking about the Work Health and Safety (WHS) Act in Australia. Which is surprisingly relevant to what we do in Fact. Let’s see how surprising and relevant it is.Were going to look at the WHS Act. And its relevance to what we’re talking about here on the Safety Artisan. And it’s important to answer that question first, The “So what” test. Many people think that the WHS Act is only applicable To safety In the workplace. So they see it as purely an occupational health and safety Piece of legislation.

And it isn’t!

It does do that, but it does so much more as well.And in this short presentation, I’m going to show you why The WHS act is relevant. To system safety, functional safety, design safety, Whatever we want to call it.

Now I’m actually looking up some information On the work Health and Safety Act, from The Federal Register of Legislation. And, (In blue letters.) And if we go down to the bottom left-hand side of the screen. We will seeA little map of Australia with a big red tick on it. And in green, it says ‘in force latest version’. So I looked at the Website Today, the 6th of October. And this is the latest version. Which is just to make sure that We’ve got the right version. In Australia the Jurisdiction of which version of the act is in place Is complex. I’m not going to talk about that in the short session but I will in the full video version.

The Primary Duty of Care under the WHS Act

The Primary Duty of Care under the WHS Act is as follows. So a person Conducting a business or undertaking and – a Person Conducting a Business or Undertaking is usually abbreviated to PCBU. A horrible, horrible, clunky term! What it’s trying to say is whether you’re doing business or it is non-profit. Whether you work for the government. Or even if you’re self-employed. Whoever you are and whatever you do. If it’s to do with work, being paid for work. Then this applies to you.

Those people doing this stuff Are responsible For ensuring the health andsafety Of workers, who are engaged or paid by the person, by the PCBU. Workers whose activities are influenced or directed by the PCBU while they’re at work. And also the PCBU must ensure the health and safety of Other people. So in the vicinity of the workplace let’s say, or Maybe visitors.

As always the caveat on this ‘ensuring’ Health and Safety is ‘So Far As is reasonably Practicable’. Again we’re not going to be talking about So far as is reasonably practicable in this session, we’ll talk about it in the longer session; and, in fact, I think I’m probably going to do a session Just on the how to do So far as is Reasonably Practicable Because A lot of people Get it wrong. It’s quite a different concept. If you’re not used to it.

Designer Duties under the WHS Act

Moving on. We’ve jumped from Section 19 to Section 22. And we’re now talking about the duties of designers. Well, this doesn’t sound like occupational health and safety does it? So we look at the designer duties of PCBUs who design Plant, Substances, Or structures. So we’re talking industrial plant we’re not talking about commercial goods. There are otherActs that apply to stuff that you would buy in a shop. So this is industrial plant, Chemical substances and the like. And structures and those might be buildings. Or they might be ships, floating platforms, whatever they might be. Aircraft. Cars.

The First WHS Duty of a Designer

So here we have The First Duty of a designer. And there are three groups of duties. First of all, The designer Has to ensure The health and safety of People in the workplace. If they’re designing plant. If they’re designing or creating. A substance, or A structure. That is to be used, Or might reasonably be expected to be used At a workplace. This duty applies to them. So they’ve got to do whatever it takes. To ensure Health and Safety So far as is reasonably practicable.

Now, carrying on from that. We get a bit more detail. So the designer has got to ensure, so far as is reasonably practicable, that plant, substance or structure Is designed To be without risks. The risks are To the health and safety of persons, who Are At a workplace. Who might, Use it For the purpose for which it was designed, Who might Handle the substance. Who might store the plant or substance? And who might construct a structure? Or, and here’s the catch-all, who might carry out any reasonably foreseeable activity At a workplace In relation to this plant, substance, or structure.

And then if we go on to Part (e)(i) And we now get a long list of stuff. Any reasonably foreseeable activity Includes manufacture, assembly, Use, Proper storage, decommissioning, dismantling, disposal, Etc. We run out of space there. But the bottom line is that the scope of this act is cradle to grave. So from the very first time that we Design A plant, substance or structure. Right through to final disposal of said, Plant Substance and structure. The Designer has safety responsibilities. Thinking about the whole lifecycle of This stuff.

The Second WHS Duty of a Designer

Now we move on to the other Two duties that a designer has. So in subsection 3. The designer has a duty to carry out testing. That’s what it says in the guide. Actually, if you look at the words in the act it says the designer must carry out or arrange for Calculations, analysis, testing, Or examination. Whatever is necessary for the performance of the duty that We just described In Subsection 2. You recall Subsection 2, cradle to grave, from creation to final disposal. Calculations, analysis, testing or examination Might be needed. The designer has got to Carry that out Or arrange it. In order to ensure safety SFARP.

The Third WHS Duty of a Designer

And then, our Final Duty Is having done all of that work. Having designed this stuff to be safe and done all the Calculations and testing. The designer must give Adequate information to each person provided with the design. And the purpose of doing so, We’re not just providing information for the sake of it, or because we felt like it. It’s provided for a specific purpose. So each Purpose, Which the plant, substance or structure was designed. So we need all the information associated With its design purpose.We’ve got to provide the results of those calculations, analysis, testing andexamination.

And, Probably this is also equally Crucial from a hazard analysis point of view, Any conditions necessary to ensure that the plant, substance or structure Is without risk to health and safety. When it is used for the purpose for which it was designed, Or, (All the other stuff If we go back toSection 2.)

So Section 4, Does actually say this applies to Section 2(a-e). But we ran out of space on the page, so the designers got to provide all the information necessary. for people to use this stuff and for the life cycle of whatever it is from cradle to grave. Now, If we look at Section 4(a-c), We can say that’s the kind of information we generate from Hazard Analysis from safety analysis. So, yeah, Absolutely We need system safety In order to meet these duties, to satisfy these duties.

A Consistent set of Duties Across the Supply Chain

And these duties are not just on designers, because the WHS Act Is actually Very, very clever. Because it applies Much the same duties, those three duties that we heard of. The duty to ensure health and safety. The duty to test and analyze. And the duty to provide information. If we look at Sections 22, Through 26, We find that very similar duties applyTo designers.To manufacturers.To importers.To suppliers.And to those installing, constructing, Or commissioning. Substances andStructures.And the duties in these sections are all consistent. Basically, it recognizes that there is a supply chain. From design right through to installation and commissioning. And Everybody in that chain Has duties To do their part correctly, or to test what they have to. Pass on information, To the next set of stakeholders.

And then, In addition to that, If we looked in Section 27 we would see the Officers Of the PCBU, so Company directors and the like, People with, major influence, Who are able to direct operations and that kind of thing. So senior management and directors of companies and the equivalent in the public sector Have special requirements applying to them. Again, We’re going to talk about that in the Main Video, Not in this one. And then workers have Duties to Comply with reasonable instructions, That are intended to keep safe And other workers . So that if we go to Section 28 you get the kind of thing that you would expect to see in work-place safety.

Copyright and Attribution

So that’s it In the short video. Just to mention that I have Shown you information From the Federal Register of Legislation. I’m entitled to do that under the Creative Commons license. And I’m making the required attribution statement. You can see it in the middle of the Screen. And for the full information on these terms on copyright and attribution, Please go to that page On my website. And you will find full details of the terms and conditions, under which this video was created. And if you want to see the full version of the introduction to the WHS Act, which is going to cover a lot more ground than this then please go to the Safety Artisan page On www.Patreon.com.

That’s the Presentation. And it just remains for me to say, Thanks very much for listening. I look forward to meeting you again. Cheers now.

The Full Version is Here…

If you want more, if you want a wider and deeper view of the WHS Act, then there’s a longer version of this video. Which you can get at my Patreon page.

I hope you enjoy it. Well that’s it for the short video, for now. Please go and have a look at the longer video to get the full picture. OK, everyone, it’s been a pleasure talking to you and I hope you found that useful. I’ll see you again soon. Goodbye.

The full-length ‘Guide to WHS’ post and video is here.
#atworkhealthandsafety #guidetowhsact #howdoeswhswork #howtoworkinhealthandsafety #projectworkhealthandsafetyrequirements #whatarewhsstandards #whatisthemeaningofworkhealthandsafety #whatiswhsandwhyisitimportant #whatmustemployeesdoforhealthandsafety #whatwhsmeans #whatwhsstandfor #WHS #whs2011regulations #whsdutyofcare #whshazardsandrisks #whyarewhspoliciesimportant #WorkHealthandSafety #workhealthandsafety2012 #workhealthandsafetybill #workhealthandsafetybill2011 #workhealthandsafetyemployerresponsibilities #workhealthandsafetyguidelines #workhealthandsafetyobjectives #workhealthandsafetypurpose #workhealthandsafetyquestions #workhealthandsafetystrategy
Simon Di Nucci https://www.safetyartisan.com/2023/02/01/introduction-to-australian-work-health-safety/

The 2023 Digest The 2023 Digest brings you all The Safety Artisan's blog posts from last year. I hope that you find this a useful resou...